Hbo1 is a cyclin E/CDK2 substrate that enriches breast cancer stem-like cells.

نویسندگان

  • Mylinh T Duong
  • Said Akli
  • Sira Macalou
  • Anna Biernacka
  • Bisrat G Debeb
  • Min Yi
  • Kelly K Hunt
  • Khandan Keyomarsi
چکیده

Expression of cyclin E proteolytic cleavage products, low-molecular weight cyclin E (LMW-E), is associated with poor clinical outcome in patients with breast cancer and it enhances tumorigenecity in mouse models. Here we report that LMW-E expression in human mammary epithelial cells induces an epithelial-to-mesenchymal transition phenotype, increases the CD44(hi)/CD24(lo) population, enhances mammosphere formation, and upregulates aldehyde dehydrogenase expression and activity. We also report that breast tumors expressing LMW-E have a higher proportion of CD44(hi)/CD24(lo) tumor cells as compared with tumors expressing only full-length cyclin E. In order to explore how LMW-E enriches cancer stem cells in breast tumors, we conducted a protein microarray analysis that identified the histone acetyltransferase (HAT) Hbo1 as a novel cyclin E/CDK2 substrate. The LMW-E/CDK2 complex phosphorylated Hbo1 at T88 without affecting its HAT activity. When coexpressed with LMW-E/CDK2, wild-type Hbo1 promoted enrichment of cancer stem-like cells (CSC), whereas the T88 Hbo1 mutant reversed the CSC phenotype. Finally, doxorubicin and salinomycin (a CSC-selective cytotoxic agent) synergized to kill cells expressing LMW-E, but not full-length cyclin E. Collectively, our results suggest that the heightened oncogenecity of LMW-E relates to its ability to promote CSC properties, supporting the design of therapeutic strategies to target this unique function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor and Stem Cell Biology Hbo1 Is a Cyclin E/CDK2 Substrate That Enriches Breast Cancer Stem-like Cells

Expression of cyclin E proteolytic cleavage products, low-molecular weight cyclin E (LMW-E), is associated with poor clinical outcome in patients with breast cancer and it enhances tumorigenecity in mouse models. Here we report that LMW-E expression in human mammary epithelial cells induces an epithelial-tomesenchymal transition phenotype, increases the CD44/CD24 population, enhances mammospher...

متن کامل

Tumor and Stem Cell Biology Cdk2 is Required for Breast Cancer Mediated by the Low-Molecular-Weight Isoform of Cyclin E

Cyclin E activates Cdk2, controls centrosome duplication, and regulates histone gene transcription. Cyclin E is deregulated in cancer and appears as low-molecular-weight (LMW) isoforms that correlate strongly with decreased survival in breast cancer patients. Transgenic mice overexpressing LMW-cyclin E have increased incidence of mammary tumors and distantmetastasis when compared withmice that ...

متن کامل

Cyclin E2 overexpression is associated with endocrine resistance but not insensitivity to CDK2 inhibition in human breast cancer cells.

Cyclin E2, but not cyclin E1, is included in several gene signatures that predict disease progression in either tamoxifen-resistant or metastatic breast cancer. We therefore examined the role of cyclin E2 in antiestrogen resistance in vitro and its potential for therapeutic targeting through cyclin-dependent kinase (CDK) inhibition. High expression of CCNE2, but not CCNE1, was characteristic of...

متن کامل

Low-molecular-weight cyclin E can bypass letrozole-induced G1 arrest in human breast cancer cells and tumors.

PURPOSE Low-molecular-weight cyclin E (LMW-E) in breast cancer cells induces genomic instability and resistance to inhibition by p21, p27, and fulvestrant therapy. Here, we sought to determine if LMW-E renders breast cancer cells unresponsive to aromatase inhibitors (AI), elucidate the mechanism of such resistance, and ascertain if inhibitors of LMW-E-associated kinase activity could overcome t...

متن کامل

Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution.

In order to elucidate the mechanisms by which estrogens and antiestrogens modulate the growth of breast cancer cells, we have characterized the changes induced by estradiol that occur during the G1 phase of the cell cycle of MCF-7 human mammary carcinoma cells. Addition of estradiol relieves the cell cycle block created by tamoxifen treatment, leading to marked activation of cyclin E-cdk2 compl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 73 17  شماره 

صفحات  -

تاریخ انتشار 2013